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Abstract  

The considered nonlinear system with an elastomer element is subjected to the harmonic 
excitation and undamped practically. The performed analysis confirms that there is 
possibility of irregular motion  in the system, similarly as in reality chaotic motion in  case 
of conservative and Hamiltonians systems. Such kind of motion seems to be specific  to the 
non-linearity of elastomers for heavy loaded systems that are  forced at the frequencies 
close to ones from the resonant zones. 
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1. Introduction   

 
As a result of the research on the oscillation systems with elastomer elements,  how 
it has been reported  among others in  the work [Boczkowska A.,  at al, 2008], an 
irregular character of obtained  time histories  of vibration is revealed.  Therefore, 
the question is: weather the specific, strongly non-linear  characteristic of an 
elastomer elasticity may be the reason of the chaotic motion and irregular solutions 
of equations. 
Elastomers  for typical conditions of use are highly non-compressible materials that 
possess extremely low level of damping  (which can be neglected in practice) and 
very high (up to 1000 %) convertible elastic deformations [Ward M., 1971]. Such 
materials are described by the complex  well-developed theory of the 
hyperelastisty, and  that is why in practice the  Mooney - Rivlin, Ogden  or  Yeoh 
models [Ward M., 1971]  are often utilized. 
Our aim in this report   is to analyze the numerical  results of computation for 
forced undamped vibration (and  also in order to emphasise some problems - 
considering damping) in the system with  an elastomer element as well as to 
evaluate the possible irregular motion.  
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2. Equation of motion  
 

We start with a description of the structure characteristics. The spatial model 
consist of the mass m,  weightless elastic constraints which imitate elastomer 
material and weightless viscoelastic damper with the linear characteristic.  
Properties of elastomers are described by the classical Mooney’s model.  The 
functional of  elasticity is wrote down by the formula (the notation like in the 
monograph [Ward M., 1971]): 

( )311 −= ICU , (1) 

where: 1I  is the first invariant of the state of strain and it is described by  
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the finite deformation  theory [Ward M., 1971]. We take advantage of the condition 
of  incompressibility expressed by the formula  
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 After the substitution (2) and  (4) into (1) we obtain 
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Now, we differentiate the above formulated expression according to   
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and  introduce the dimensional co-ordinate x by use of  the approximate expression 
accordingly:  
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(l is the length of the elastic element), and then we obtain the expression describing 
the elastic force: 
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where the stiffness coefficient is expressed  by 
l

C
k 12= . 

We assume that the object of our research  is  an elastomer  EPUNIT that has 
been worked out at Faculty of Material Engineering of the Warsaw  University of 
Technology. This material was  experimentally examined and the results were 
presented in [Boczkowska A.,  at al, 2008]. The results of  the experiments for this 
elastomer  presented in the monograph [Żach, P., 2013]  are also taken into 
consideration. 
 
It has already been emphasized that this elastomer is strongly non-linear, thus the 
governing equation of motion is in the form 
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where: m – mass,  c – damping, k –spring constant. In the subsequent computation 
there have been accepted the values of parameters as follows: m =0,1 kg, k = 9034 
N/m and l = 0,01 m. Evaluation of damping forces  has been conducted by use of 
the non-dimensional theoretical damping factor  ζ=c/[2(m k)1/2]. 
The systems with elastomers are mainly used as shock absorbers. For this type of 
devices it is obvious that forces act rather inside of compressing range of loads. 
Thus, for this kind of loads the appropriate expression describing input forces is 
formulated in the form 

( ) 0FtFtP −= νsin  
(10) 

where, ν - frequency of acting variable force, F- amplitude  of this force,   F0- 
constant load. 
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3.  Vibration of the heavy – loaded system with an elastomer 

element  
 
As we have just  mentioned,  the irregular vibration  had been observed in the 
systems with the elastomer element. Thus,  it is reasonably to research into the 
nature of this phenomenon. As an introduction to the detailed  study of the subject  
we focus on the model described by the equation (9) and  its  solutions obtained on 
the basis of computation. 
On this stage  of the research, mainly the fundamental  methods of solving and 
analyzing the complex dynamic processes described by the differential equations 
have been chosen. The solutions of the differential equation have  been finally   
obtained using the Gear method of the numeric integration. To obtain the sufficient 
accuracy of computation for long time periods we have taken advantage of 
methodology similar to the one applied in studies  [Warmiński J.,  2010, Pascal M., 
2012, Chin C.M., Nayfeh A.H., 1997] and in previous studies  of author’s [Dyk J.,  
at al, 1994]. Taking into consideration the question what kind  of the  motion is it, 
we are convinced that only a thorough examination in every respect by use of the 
sufficiently wide range of dynamic factors help us to detect the properties of 
dynamic signals. We use some of these factors for our purposes, and therefore we 
focus on the analysis of  the results obtained  i.a. on the basis of:  statistical  
evaluation of data, frequency spectrum and the  Poincaré portraits of the space 
trajectory.  
   
4. Numerical calculation        
 
Non-linearity of the equation (9) is  illustrated by the elastic force plot for different 
constant values of the external loading (Fig. 1). Considering the specific kind of 
external forces, a static deflection can be defined with the help of the balance 
examination for the external and elastic forces - such an example   illustrates Fig.2. 
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Fig.1. Elastic force S(x) for various constant external loads 
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Fig.2. State of equilibrium of the external load F0= 300N and the elastic force  

S(x) – calculation of a static deflection 
 
Irregularity of  the obtained results of eq. (9) in the case of  undamped  forced 
vibration grows with an increasing of the external loads in resonant zones.  An 
introductory statistical analysis of the obtained results (displacements) for different 
external loads, shows only  the slight similarity to the one-side truncated  Gaussian 
distribution (an example in Fig.3). The last mentioned  property is a consequence  
of the  one-side constraints by acting compressing forces on the system. When the 
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difference between the real and theoretical normal distribution  seems to be  
significant it may confirm that the signal is  chaotic. 
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Fig.3. Comparison of the normal distribution between the real distribution of the obtained  

displacements 
 
There have been conducted the computation to show how the results look in the 
phase-plain (xn- displacement, vn- velocity). By way of  illustration, an example for  
an appropriate sampling period is included (Fig.4). In the conservatives systems 
there is known the fact  that the phase volume does not change. On the basis of 
Poincaré  reccurence theorem,  it is possible to state that in such a case of systems, 
almost all trajectories  pass  nearby and close to their initial points. In opposite to 
the dissipative systems, there is lack of the attractive zones in the space phase - 
there is no constant points, limit cycles  and strange attractors. However, there are 
also zones of  a phase space  in which chaos appears, and these zones are 
unattractive and  existing alternately together with ones which have  the regular 
evolution [Schuster H.G., 1988,]. As we can observe in Fig. 4a the phase-plain 
shown there is quite different from  the next illustration  presented in Fig.4b. The 
results illustrated on the phase-plain shown in Fig. 4a exhibit similarity to the 
chaotic vibrations and can be a sign that the motion is irregular. The next example 
shown in Fig.4b signalizes the periodicity of the vibrations.  In these both examples 
the damping is excluded in the calculations and the data is only differ for the 
external loads.  
As we have already mentioned, the elastomers have extremely low level of 
damping which can be neglected in practice. But now, for the sake of completeness 
we may also assume that dissipative forces play significant role. There are usually  
several of the  control parameters for the system - in this case it is the external load, 
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and when we introduce dissipative forces it is as well as   the damping. For the 
same procedure of sampling as for that  which has been used to create the phase 
plain, we obtain results in the form of bifurcation diagrams  (Fig. 5).  
(a) 
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Fig.4.  Poincaré  portrait (xn, vn) for  F=Fo=300N, ν /ω = 1  and  20000 points  (a);               

F=F0=100N, ν /ω = 1  and  20000 points (b) 
 
It is obvious, that  the damping level is a crucial  factor  which is influencing on the 
irregularity of  the  motion by acting the external loads of relatively considerable 
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values. This influence is also illustrated in the simulation of the  responses to  
impulse forces in the  case of an undamped system (Fig.6a) and  for a rational level 
of damping (Fig.6b) - τ /T is a relation of a time duration of an impulse to the 
theoretical period of natural vibration. 
The results of eq.(9) after performing the frequency analysis  by use of the FFT 
(Fast Fourier Transform) for F=F0=300 N  and   ν /ω = 1,  are  shown in Fig.7a. 
There is shown an influence of the long-term changes of the obtained time series in 
the lower and medium bands of frequency. On this background we can see the sub- 
and ultra-harmonics of the natural frequency of the system  ω = 47,8Hz. In 
comparison with this spectrum, in Fig.7b there is shown the  case of  the spectrum 
for F=F0=100N.  We can notice that there is not any  continuous background in the 
lower bands and we can observe only  the discrete  dominating values of harmonics 
of the natural frequency. 
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Fig.5. Bifurcation diagram for varied damping level  by the constant external loads  for 
F=F0=300 N 
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 (a) 

 
(b) 

 
Fig.6. Simulation of the  response to  the impulse force for  an undamped system  τ/T = 0,2  

and height of impulse F0 = −1200 N (a), in case of damping factor ζ= 0,05; τ/T = 0,2   
and height of impulse F0 =−1200 N (b) 
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(b) 
Fig.7. Frequency spectrum  for displacements  of  the system (a) for F0= F=300 N, ν /ω = 1 

(b)  for F0= F=100 N, ν /ω = 1 
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Finally, (Fig. 8a and 8b) there are shown the vibration characteristics for the 
system subjected to the harmonic excitation vs. a non–dimensional  relation of 
frequencies ν/ω.  In these plots, values of maximal, minimal and root-mean square 
displacements (Xmax, Xmin, Xrms- respectively) are also non-dimensional after 
normalization by using the height of elastomer  element l. (a) 

(b)
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Fig.8. Vibration characteristic  of  non-dimensional  displacements (Xmax,, Xmin,, Xrms,)   vs. 

dimensionless exciting frequencies for  the constant initial values  (a) F0= F=300 N 
(b) F0= F=100 N 
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The displacements have been obtained for the constant values  of initial conditions 
and loads F=F0=100N and 300N respectively. Again, as in the previous examples, 
the initial transient behaviour is not included, there have been only considered the 
results above time greater than 200T (T - period of excitation). Such kind of plots 
enables us to show  dynamic behaviour and to predict the resonant zones and as 
well as to evaluate the possible danger of the failure by destructive vibration. 
 
5. Conclusions  

 
If the damping is neglected, irregular motion take place in the case of considerable 
loads and relatively high  exciting frequencies in comparison with the natural 
frequency. In such cases the system exhibits dynamic behaviour  similar to the 
chaotic motion.  The  permissible motion of the system  is determined by its 
physical constraints. In one direction, the motion is limited theoretically,   by 
structural damage as a result of compressing forces, and on the free side, by  
stretching  of  the elastomer element with height l.  
From such a point of view for this kind of elastomers, because of  a lack of detailed 
experimental damage characteristics for tension and compress forces for the 
present, there is significant difficulty for evaluation  of material effects for varying 
with time and acting  with high amplitudes external forces. The other imposed 
remark is, that the description of the damping in the model,  may be more 
complicated  then it having been considered. A negligible level of damping,  is 
appropriate for the low load and low levels of frequencies of harmonic  forces and 
/or for low and medium displacements. It  means hypothetically, that for higher 
displacements or by the variable ambient temperature, significant dissipative forces 
act. It is worth remembering that the  introduction of dissipative forces described 
by the equivalent viscous damping  factor, changes significantly the forced 
vibration character of the system exited by the varying external loads.   
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