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Abstract

The considered nonlinear system with an elastor@enent is subjected to the harmonic
excitation and undamped practically. The perforngthlysis confirms that there is

possibility of irregular motion in the system, damly as in reality chaotic motion in case

of conservative and Hamiltonians systems. Such &fndotion seems to be specific to the
non-linearity of elastomers for heavy loaded systdhat are forced at the frequencies
close to ones from the resonant zones.
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1. Introduction

As a result of the research on the oscillationesystwith elastomer elements, how
it has been reported among others in the worlczBowska A., at al, 2008], an
irregular character of obtained time historiesvibfation is revealed. Therefore,
the question is: weather the specific, strongly -twear characteristic of an
elastomer elasticity may be the reason of the ahaaition and irregular solutions
of equations.

Elastomers for typical conditions of use are higitn-compressible materials that
possess extremely low level of damping (which lbameglected in practice) and
very high (up to 1000 %) convertible elastic defations [Ward M., 1971]. Such
materials are described by the complex  well-dgedo theory of the
hyperelastisty, and that is why in practice theadkky - Rivlin, Ogden or Yeoh
models [Ward M., 1971] are often utilized.

Our aim in this report is to analyze the numédricasults of computation for
forced undamped vibration (and also in order tmlessise some problems -
considering damping) in the system with an elastoelement as well as to
evaluate the possible irregular motion.
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2. Equation of motion

We start with a description of the structure chmastics. The spatial model
consist of the masm, weightless elastic constraints which imitateselmer

material and weightless viscoelastic damper witle finear characteristic.
Properties of elastomers are described by theicé#sklooney’s model. The
functional of elasticity is wrote down by the famla (the notation like in the
monograph [Ward M., 1971]):

u=c(,-3), (1)
where: |, is the first invariant of the state of strain anid described by
|, =+ 2+ 13, (2)

In this expressionA?, A5, A% are the relative elongations and are defined lyafis

the finite deformation theory [Ward M., 1971]. Wake advantage of the condition
of incompressibility expressed by the formula

AL =1, (3)
we obtain
1 1 4
p=top=t )
Al /11
After the substitution (2) and (4) into (1) wetaib

2 (5)
U= cl[/ﬁ +——3j.
Al
Now, we differentiate the above formulated exp@ssiccording to

M (6)
9,

and introduce the dimensional co-ordinatey use of the approximate expression
accordingly:

g,
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A =& +1 (7)
or
Al :X_+|

(I is the length of the elastic element), and theroltain the expression describing
the elastic force:

F =k[x+l ('_I)} ®

2
where the stiffness coefficient is expressedkby% .

We assume that the object of our research is lastoener EPUNIT that has
been worked out at Faculty of Material Engineemfighe Warsaw University of
Technology. This material was experimentally exsedi and the results were
presented in [Boczkowska A., at al, 2008]. Thailtssof the experiments for this
elastomer presented in the monograghch, P., 2013] are also taken into
consideration.

It has already been emphasized that this elast@rstrongly non-linear, thus the
governing equation of motion is in the form

where:m — mass,c — dampingk —spring constant. In the subsequent computation
there have been accepted the values of paramestéoficavs:m =0,1 kg,k = 9034
N/m andl = 0,01 m. Evaluation of damping forces has bemrdacted by use of
the non-dimensional theoretical damping faciec/[2(m K.

The systems with elastomers are mainly used aksktusorbers. For this type of
devices it is obvious that forces act rather ingdl€ompressing range of loads.
Thus, for this kind of loads the appropriate expi@s describing input forces is
formulated in the form

(9)

m$<+c>‘<+k[x+l—

P(t) = Fsinvt - F, (10)

where,V - frequency of acting variable forde; amplitude of this force,F-
constant load.
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3. Vibration of the heavy — loaded system with an etdomer
element

As we have just mentioned, the irregular vibratilhlad been observed in the
systems with the elastomer element. Thus, it @aoeably to research into the
nature of this phenomenon. As an introduction tdhtailed study of the subject
we focus on the model described by the equatioartél) its solutions obtained on
the basis of computation.

On this stage of the research, mainly the fundaamhemethods of solving and

analyzing the complex dynamic processes descrieithdd differential equations

have been chosen. The solutions of the differemitplation have been finally
obtained using the Gear method of the numeric iatem. To obtain the sufficient

accuracy of computation for long time periods wevehdaken advantage of
methodology similar to the one applied in studjégarminski J., 2010, Pascal M.,

2012, Chin C.M., Nayfeh A.H., 1997] and in previatadies of author’s [Dyk J.,

at al, 1994]. Taking into consideration the questiat kind of the motion is it,

we are convinced that only a thorough examinatioavery respect by use of the
sufficiently wide range of dynamic factors help tas detect the properties of
dynamic signals. We use some of these factorsdoparposes, and therefore we
focus on the analysis of the results obtained. drathe basis of: statistical
evaluation of data, frequency spectrum and thend2oé portraits of the space
trajectory.

4. Numerical calculation

Non-linearity of the equation (9) is illustrated the elastic force plot for different
constant values of the external loading (Fig. l1gn€idering the specific kind of
external forces, a static deflection can be defindith the help of the balance
examination for the external and elastic forcaschsan example illustrates Fig.2.
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Fig.2. State of equilibrium of the external ldagt 300N and the elastic force
S(x) — calculation of a static deflection

Irregularity of the obtained results of eq. (9)the case of undamped forced
vibration grows with an increasing of the extertwads in resonant zones. An
introductory statistical analysis of the obtainedults (displacements) for different
external loads, shows only the slight similaritytihe one-side truncated Gaussian
distribution (an example in Fig.3). The last menéd property is a consequence
of the one-side constraints by acting compresfinges on the system. When the
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difference between the real and theoretical nordistribution seems to be
significant it may confirm that the signal is ckiao
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Fig.3. Comparison of the normal distribution betwée real distribution of the obtained
displacements

There have been conducted the computation to stoewthe results look in the
phase-plainxX,- displacementv,- velocity). By way of illustration, an example for
an appropriate sampling period is included (Figld)the conservatives systems
there is known the fact that the phase volume do¢hange. On the basis of
Poincaré reccurence theorem, it is possibleate shat in such a case of systems,
almost all trajectories pass nearby and clogldw initial points. In opposite to
the dissipative systems, there is lack of the etitra zones in the space phase -
there is no constant points, limit cycles andrgjeaattractors. However, there are
also zones of a phase space in which chaos appaad these zones are
unattractive and existing alternately togethethwahes which have the regular
evolution [Schuster H.G., 1988,]. As we can observé&ig. 4a the phase-plain
shown there is quite different from the next ilfaion presented in Fig.4b. The
results illustrated on the phase-plain shown in. Big exhibit similarity to the
chaotic vibrations and can be a sign that the md#adrregular. The next example
shown in Fig.4b signalizes the periodicity of thierations. In these both examples
the damping is excluded in the calculations and dat is only differ for the
external loads.

As we have already mentioned, the elastomers hateneely low level of
damping which can be neglected in practice. But,rfomthe sake of completeness
we may also assume that dissipative forces playifgignt role. There are usually
several of the control parameters for the systanthis case it is the external load,
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and when we introduce dissipative forces it is &l &s the damping. For the
same procedure of sampling as for that which e lused to create the phase
plain, we obtain results in the form of bifurcatidiagrams (Fig. 5).

@

Xn[m]
-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
. . . . . . . . . 20
15
10
5
—
n
2
0o E
-
>
s
-10
-15
-20
4:
/____—-_\ 35
2.5 \
2.0
£ 151
E
< 1.04
05
: : 0.
-0.006 005 -0.004 -0.003 -0.002 -0.001 0.900 0.go1 0.902
/ 037
Ry 1.0
=
Xn [mM]

Fig.4. Poincaré portraik{, v,) for F=F;=300N,v/w=1 and 20000 points (a);
F=F¢=100N,v/w=1 and 20000 points (b)

It is obvious, that the damping level is a crudiattor which is influencing on the
irregularity of the motion by acting the extert@éhds of relatively considerable
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values. This influence is also illustrated in thendation of the responses to
impulse forces in the case of an undamped sygta6a) and for a rational level
of damping (Fig.6b) 7 /T is a relation of a time duration of an impulsethe
theoretical period of natural vibration.

The results of eq.(9) after performing the freqyeanalysis by use of the FFT
(Fast Fourier Transform) fdf=F;=300 N and v/w= 1, are shown in Fig.7a
There is shown an influence of the long-term charajeéhe obtained time series in
the lower and medium bands of frequency. On thikdgr@und we can see the sub-
and ultra-harmonics of the natural frequency of Hystem w = 47,8Hz. In
comparison with this spectrum, in Fig.tHere is shown the case of the spectrum
for F=F;=100N. We can notice that there is not any cowitirs background in the
lower bands and we can observe only the disadetainating values of harmonics
of the natural frequency.
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Fig.5. Bifurcation diagram for varied damping leva} the constant external loads for
F=Fy=300 N
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Fig.6. Simulation of the response to the imptitsee for an undamped systerfil = 0,2
and height of impulsé, =-1200 N (a), in case of damping fact®r 0,05;1/T = 0,2
and height of impulsg, =—1200 N(b)
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Fig.7. Frequency spectrum for displacements hef siystem (a) fof,= F=300 N,v/w= 1

(b) forFe=F=100 N,v/w=1
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Finally, (Fig. 8a and 8b) there are shown the ¥ibracharacteristics for the
system subjected to the harmonic excitation vso@dimensional relation of
frequencies/w In these plots, values of maximal, minimal aodtfmean square
displacements Xax Xmin» Xims~ respectively) are also non-dimensional after
normalization by using the height of elastomerraletl. (a)
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Fig.8. Vibration characteristic of non-dimensibmsplacementsXyax, Xmin,, Xrms) VS.
dimensionless exciting frequencies for the constitial values (afo= F=300 N
(b) Fo= F=100 N
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The displacements have been obtained for the aunsttues of initial conditions
and loadg-=F,=100N and 300N respectively. Again, as in the mesiexamples,
the initial transient behaviour is not includedgréh have been only considered the
results above time greater than ZQU - period of excitation). Such kind of plots
enables us to show dynamic behaviour and to gréaécresonant zones and as
well as to evaluate the possible danger of theraiby destructive vibration.

5. Conclusions

If the damping is neglected, irregular motion tak&ce in the case of considerable
loads and relatively high exciting frequenciescomparison with the natural
frequency. In such cases the system exhibits dynémihaviour similar to the
chaotic motion. The permissible motion of theteys is determined by its
physical constraints. In one direction, the motisnlimited theoretically, by
structural damage as a result of compressing foraed on the free side, by
stretching of the elastomer element with height

From such a point of view for this kind of elastoméecause of a lack of detailed
experimental damage characteristics for tension emwhpress forces for the
present, there is significant difficulty for evalizen of material effects for varying
with time and acting with high amplitudes exterf@ces. The other imposed
remark is, that the description of the damping lie tmodel, may be more
complicated then it having been considered. Aigddg level of damping, is
appropriate for the low load and low levels of freqcies of harmonic forces and
/or for low and medium displacements. It meansotiygtically, that for higher
displacements or by the variable ambient tempegagignificant dissipative forces
act. It is worth remembering that the introductmfndissipative forces described
by the equivalent viscous damping factor, changemificantly the forced
vibration character of the system exited by thegivay external loads.
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